

Std. – 12th

Sub:- Chemistry

SECTION A 0.1. Select and write correct answer: 10. D) $(CH_3)_3 CBr$ 1. 2. C) 100.26^oC 3. C) CCI_4 C) 10⁻⁴M 4. 5. B) Mn B) $[Xe]4f^{1-14}5d^{0-1}6s^2$ 6. 7. D) CH₄ 8. A) 0.54 A) 0.74 9. 10. $D)CH_3OH$ Answer the following: 8. Q.2 K_H Henry's law constant is the solubility of the gas in a liquid when its pressure over the 1. solution is 1 bar. Unit of K_H =molL⁻¹bar¹ or mol dm⁻³ atm⁻¹ 2. (i) In a rate law equation, the constant of proportionality (K) is called the rate constant. (ii) The rate constant is independent of concentration and changes with temperature. 3. The high density of polymers is due to strong intermolecular force of attraction such as hydrogen bonding (as in case of nylons), dipole-dipole interaction (as in case of polyesters and poly-acrylonitrile) 2-to 3% solution of iodine in alcohol and water is called tincture of iodine and it is used for 4. cleaning wounds. 3.3-dimethyl butanoic acid 5. Frankel defect. 6. In tetrahedral geometry all the positions are adjacent to one another. Hence tetrahedral 7. complexes do not show geometrical isomerism. Every system has certain measurable thermodynamic properties such as temperature, 8. pressure and volume. These properties are called state variables' **SECTION B** Attempt Any Eight: 16. Solution : Data: Electric current = I=6A, Time = t = 15 min = 15 * 60 = 900sQ.3. Mass of AI produced =0.504g, Molar mass of AI = ?**Reduction** reaction $AI_{(aq)}^{3+} + 3_{e-} \rightarrow AI_{(aq)}$ Quantity of electricity passed = $Q = I \times t$ $= 6 \times 900$ = 5400 C $\frac{Q}{F} = \frac{5400}{96500} = 0.05596 \text{ mol}$ Number of moles of electrons = From reaction, 3 moles of electrons deposit 1 mole AI $\therefore 0.05596$ moles of electrons will deposit, $\frac{0.05596}{3}$ =0.01865 mol A Now. 0.0865 mole AI weighs 0.504 g \therefore 1 mole AI will weigh = $\frac{0.504}{0.01865}$

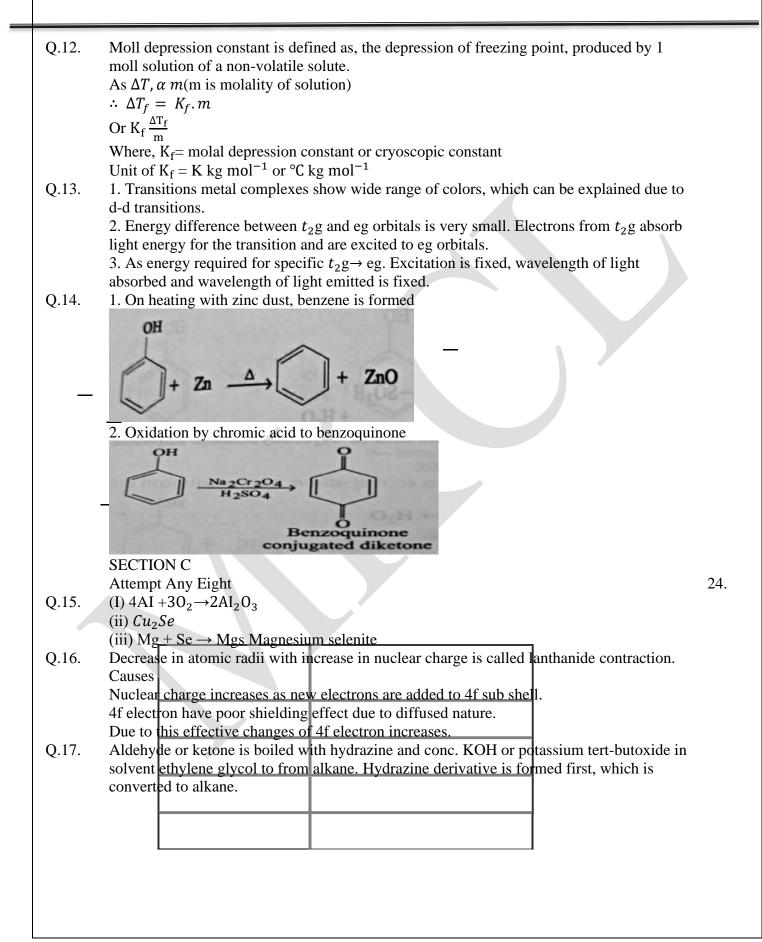
Std. – 12th

Sub:- Chemistry

= 27gMolar mass of AI is $27gmol^{-1}$.

Q.4. (I) consider a salt NaCI, of strong acid HCI and strong base NaOH. When it is dissolved in water it dissociates completely into ions. $NaCI_{(aq)} \rightarrow Na^+_{(aq)} + CI^-_{(aq)}$ (ii) The ions of Na⁺ and CI⁻have in tendency to react with water because the products NaOH and HCI are strong electrolytes and dissociate completely in aqueous solution. (iii) $\operatorname{Na}_{(aq)}^+ + \operatorname{CI}_{(aq)}^- + \operatorname{H}_2O \rightarrow \operatorname{HCI}_{(aq)} + \operatorname{NaOH}_{(aq)}$ $HCI_{(aq)} + NaOH_{(aq)} + H_2O \rightarrow H_3O_{(aq)}^+ + CI_{(aq)}^- + Na_{(aq)}^+ + OH_{(aq)}^-$ Thus the reactants and products are the same. (iv) This implies that neither action nor anion of the salt reacts with water due to which there is no hydrolysis. Since) $[H_3O^+] = [OH^-]$, solution is neutral. Q.5. In solutions of non-volatiles solutes, the law is applicable only to the volatile solvent. (ii) According to Raoul's law $P_1 = P_1^{\circ} x_1$ (iii) For a binary solution containing one solute. $x_1 = 1 - x_2$ It therefore follows that, $- P_1 = P_1^{\circ}.x_1$ $= P_1^{\circ}(1 - x_2)$ $\overline{P_1^{\circ}} = P_1^{\circ} = P_1^{\circ} \cdot x_2$ $OrP_1^{\circ} - P_1 = P_1^{\circ} \cdot x_2$ P_1° - P_1 is Δp lowering of vapour pressure. Hence. $\Delta p = P_1^{\circ}$. x_2 As $\overline{\Delta p}$ depends on \varkappa_2 , that is no number of solute particulars. Thus, Δp the lowering of vapour pressure is a colligative property. Q.6. *SN*¹reaction mechanism *SN*²reaction mechanism SN^1 Reaction is a first order reaction. SN¹ Reaction is a second order reaction. The rate of reaction depends only upon the The rate of reaction depends upon the concentration of the halo alkanes (alkyl concentration of the halo alkanes and the halides). nucleophile. It involves the formation of a harmonium It does not involves, the formation of a ion intermediate harmonium ion intermediate It is a two-step reaction with transition It is a single step reaction with transition states. states. The nucleophile attack the substrate from The nucleophile can attack the carbocation from both the side. the side opposite (backside) to that of the leaving group. It leads to racemization of the product It involves inversion of the configuration. If is called Walden Inversion. It is favored by non-polar solvents like It is favored by polar solvent like water. benzene. This reaction takes place in presence of This reaction takes place in presence of weak bases. strong bases. Inversion of configuration only $\overline{50\%}$ Inversion of configuration is 100%.

Std. – 12th

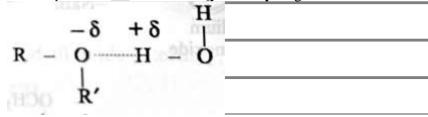


	Order of reaction of alkyl halides: tart > Order of reactivity of alkyl halides : pri >
07	$\frac{\sec > pri}{\sec > tart}$
Q.7.	Given : $E^0_{(Zn/Zn^{2+})} = 0.76V$
	$E^{0}_{(co/co^{2+})} = 0.28V$
	To find : change in Gibbs free energy (ΔG^0)
	Formula: I. $E_{cell}^0 = E_{(cathode)}^0 - E_{(Anode)}^0$
	ii $\Delta G^0 = -nFE^0_{Cell}$
	Calculation:
	From formula (I),
	$E_{Cell}^{0} = E_{(zn/Zn^{2+})}^{0} - E_{co/co^{2+}}^{0}$
	= 0.76-0.28
	=+0.48V
	From formula (I),
	Change in Gibbs free energy (ΔG^0)
	=-2×96500×0.48
0.9	=-92.640kJ —
Q.8.	1. Magnetic properties of complexes and it's variation with temperature is explained by CFT but not by VBT.
_	2. Kinetic and thermodynamic stabilities are explained by CFT but not VBT.
	3. CFT explains spectroscopic properties, d-d transition and color of complexes byte not
	be explained by VBT.
	4. Quantitative measure of stability of complexes is explained by CFT but not by VBT.
Q.9.	Date : $V_1 = 1m^3$
	$V_2 = 10m^3$
	$P = 2.026 \times 10^2 Nm^{-2}$
	To find: $W = ?$
	$W = -P\Delta V$
	$W = -2.026 \times 10^{2} (10 - 1)$
	$= -2.026 \times 10^2 \times 9$
0.10	= -1823.4J
Q.10.	(I) similar to lanthanides, they appear silvery white in color. (ii) These are highly reactive radioactive elements.
	(iii) Expect promethium (pm), all are nonradioactive in nature
	(iv) They experience decrease in the atomic and ionic known as actinium (Ac) to
	lawrendium (Lw), known as actioned contraction.
	(v) They usually exhibit +3 oxidation state. Elements of first half of the series usually
	exhibit higher oxidation states.
Q.11.	(I) Oxidation of I ⁻ from aq. Solution of KI by acidified $K_2Cr_2O_7$ given I ₂ . Dichromate is
	reduced to chromic sulphate. Liberated I_2 turns the solution brown.
	$K_2Cr_2Q_7 + 6KI + 7H_2SQ_4 \rightarrow 4K_2SQ_4 + Cr_2(SQ_4)3 + 7H_2Q + 3I_2.$
	(ii) When H_2S gas is passed through acidified $K_2Cr_2O_7$. Solution, H_2S is oxidized to pale
	yellow precipitate is reduced to chromic of sulphate, which is reflected as colour change of
	solution from orange to green. $K_2Cr_2O_7 + 4H_2SO_4 + 3H_2S \rightarrow K_2SO_4 + Cr_2(SO_4)3 + 7H_2O + 3S.$
	$K_2 G_2 O_7 + \pi I_2 O_4 + 3 H_2 O_7 + K_2 O_4 + G_2 (O_4) O_7 + H_2 O_7 O_4 + 0 O_4 $

Std. – 12th

Std. – 12th

Sub:- Chemistry

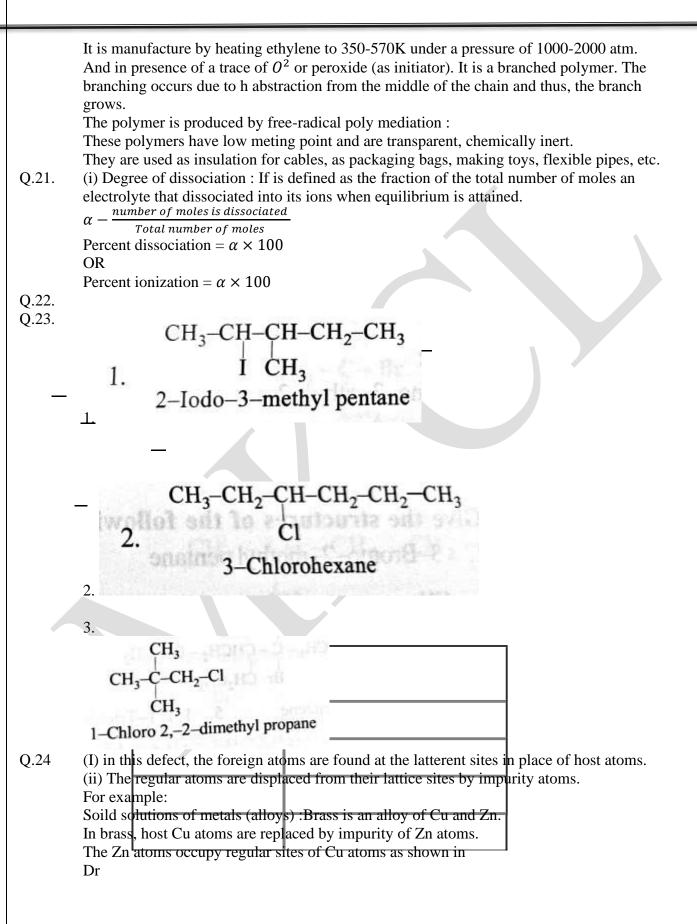


-C+H2N-NH C=N-NH. $H_3C - \dot{C} = O + H_2N - NH_2$ HOH, C - C = N - NH, KOH, Chycol, H,C - CH, + N. Acetaldehyde CH, KOH, Glycol Hydru Ethvl b Q.18. Given : $T_1 = 470K$ $T_2 = 508K$ $K_1 = 1.05 \times 10^{-3}/s$ $K_2 = 1.11 \times 10^{-2}/s$ R = 8.314 J/molTo find: Activation energy $(E_a) =$? Formula: $\log \frac{K_1}{K_2} = \frac{E_a}{2.303R} \times \frac{T_2 - T_1}{T_1 \times T_2}$ Calculation : According to Arrhenius equation : 2.303 R log 2.303 R log $\left(\frac{k_2}{k}\right) = E_4 \left[\left(\frac{1}{T}\right) - \right]$ $2.303 \times 8.314 \log \left(\frac{1.11 \times 10^{-2}}{1.05 \times 10^{-3}} \right) = E_a \left[\frac{1}{470} \frac{1}{508} \right]$ 2.303 × 8.314 × log(10.5714) = Ea[0.002128 - 0.001969] 2.303 × 8.314 × 1.02413 = E_a × 0.000159 $\therefore E_{\rm g} = \frac{2.303 \times 8.314 \times 1.02413}{1000}$ 0.000159 19.6092 = 123328.3 J/mol 0.000159 : Ea = 123.32 kJ/mol

Q.19. 1. Band angle in ether is110°.So, net dipole moment is 1.18 D for diethyl ether.
2. Boiling points of alkanes, alcohols and ethers: If Ethers, alkanes and alcohols of similar molecular masses are compared, boiling point of ethers is slightly more than alkanes due to weak dipole-dipole interaction but less alcohols due to absence of hydrogen bonding.

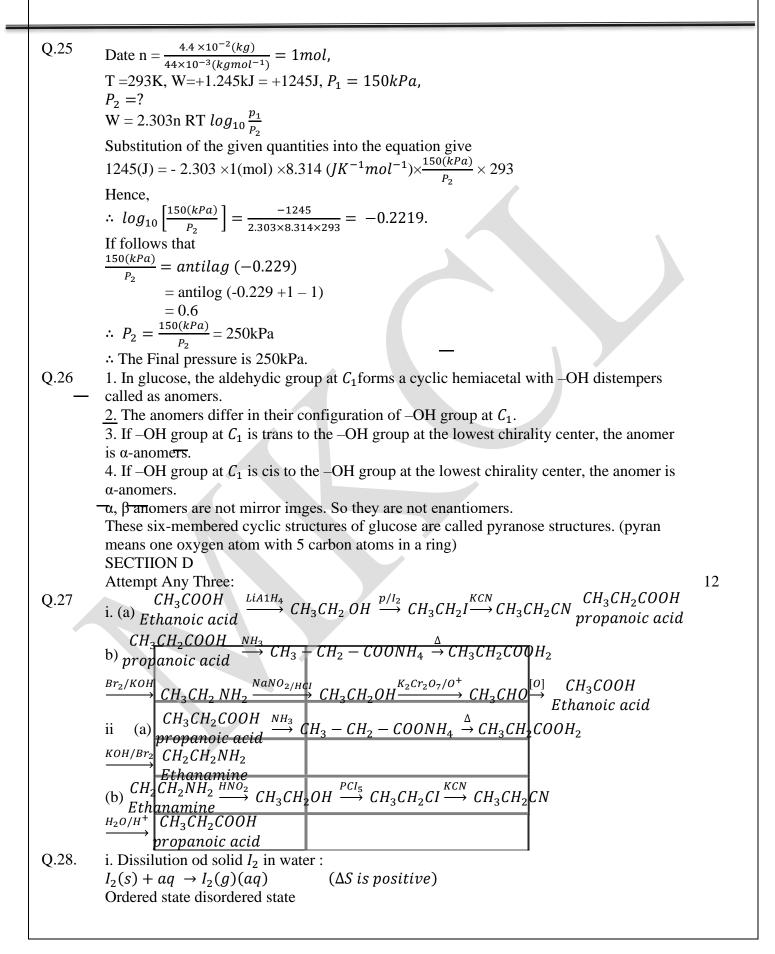
Compound	n-Heptane	Methyl n-plenty ether	n-Hexyl alcohol
Boiling pinot/K	371	373	430

3. Miscibility with water : Ethers are water miscible as they from hydrogen bonds with water



Q.20. Low density polythene (LDPE)

Std. – 12th



Std. – 12th

Q.29.

Model AnswerSet-I

Std. – 12th

Sub:- Chemistry

When solid iodine dissolves in water I_2 molecules move randomly. Thus disorder and hence, entopy of the system increase or ΔS is positive for the dissolution process. (ii) Dissociation H_2 gas is converted into two H atoms. $H_2(g) \rightarrow 2H(g)$ One mole of H_2 gas is converted into two H atoms.Larger disorder is associated with separated H atoms than with H_2 molecular. Thus, disorder and hence entropy increases or ΔS is positive. ii Given : $[I^-] = 0.03$ M $E_{electron}^{0} = 0.5355 \text{ V}$ To find : electron potential $(E_{cell}) = ?$ Formula: $E_{electron}^{0} - \left(\frac{0.0592}{n}\right) \times \log \frac{[Product]}{[Reactant]}$ Calculation: The reduction reaction at the electrode is represented as $\frac{1}{2}I_2 + e^- \rightarrow I^-$ According to Nernst equation $E_{Cell}^{0} = E_{Ecell}^{0} - \left(\frac{0.0592}{n}\right) \times \log \frac{[l^{-1}]}{[l^{-1}]^{\frac{1}{2}}}$ $= 0.5355 \left(\frac{0.0592}{n}\right) \times \log\left[\frac{0.03}{1}\right]$ =0.5355 -0.0592)×log (0.03) $= 0.5355 - (0.0592 \times -1.5228)$ = 0.5355 - 0.09014= + 0.6256∀ i. $[Ni(NH_3)_6]^{3\oplus}$ (i) Ni $\rightarrow Ni(28) \rightarrow 3d^84s^2$ $\overline{(ii)}$ Oxidation state of Ni^{3+} (iii) Valence shell electronic configuration of Ni^{+3} (iv) Six NH_3 ligands so vacant hybrid orbitals required for ligand bonding with central metal atom is 6 $(NH_3 \text{ is S.F.Ligand, spin paining doesn't help})$ Ni uses sp^3d^2 hybrid orbitals Six sp^3d^2 hybrid orbitals of Ni^{+3} overlap with the six orbitals of NH_3 ligand so configuration will be. Geometry is octahedral Since there are 3 unpaired electrons hence it will be paramagnetic ii Co-ordination compounds Double salt i)They contain two simple salts in 1. The simple salts may or may not be in equimplar ratio. equimolar ratio. 2. They exist in solid state and do not ii) They exist only in solid state and dissociate completely in aqueous solution dissociate completely into ions when to give present. dissolved in water. iii) Only ionic bonds are present. 3. Co-ordinate bands are present, ionic They dontain cations and anions. bonds may be present. iv) The metal ions show normal valency only in the salt.

Std. – 12th

	4. They contain counter ions (cation/
	anions) and complex ion (cationic/
	anionic) or may be neutral.
	The metal ions show both primary and
	secondary valency.
Q.30.	i. 1. Molecular formula of glucose was to be $C_6H_{12}O_6$ from experimental analysis.
	2. It is optically active and contains four chiral carbon atoms.
	3. Chemical reactions show that glucose has five hydroxyl and one aldehyde functional
	group.
	4. Fischer gave the exact spatial arrangement of different –OH groups in glucose,
	confirming, its structure.
	ii The standard enthalpy of formation of compound is the enthalpy change that
	accompanies a reaction in which one mole of pure compound its standard state is formed
	from its elements in their standard states.
	Consider
	$H_2(g) + \frac{1}{2} O_{2(g)} \to H_2O, \Delta_r H^0 = -286kJ$ —
	For the reaction where one mole of liquid water in standard state is formed from H_2 and O_2
—	gases in their standard states, the enthalpy changes for the reaction would be the standard enthalpy of formation of water. $\Delta_f H^0$ of water is -286kJmol ⁻¹ .
Q.31.	$\overline{X}eOF_4 = +6$
	$XeO_3 = +6-$
	$XeF_6 = +6$
	$XeF_4 = +4$
	$-XeF_2 = +2$
	Anomalous behavior of fluorine is due to
	i) Small atomic size
	ii) High electro-negativity
	iii) Absence of d orbital
	iv) Low F-F bond dissociation enthalpy.